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Abstract: There’s too much garbage in the world already – we
shouldn’t add more to it. We propose a new system for memory
management that reuses and recycles whatever it can, and composts
the remainder. The recycling centre salvages objects that would
otherwise end up in the landfill of /dev/null, providing automated
object pooling. And unlike compacting garbage collectors that merely
squish things, our composting garbage collector actually converts
garbage into entropy. We examine a variety of techniques for entropy
generation within the compost heap. We explore practical implementations
of our composting collector on current hardware, and point toward the
possibilities afforded by future hardware designs. Finally, we show that
with appropriate application of reuse, recycling, and composting, we
can completely eliminate unwanted digital waste.

Introduction to Ecological Memory Management

A Manifesto

Ecological Memory Management is a new field of of memory
management that takes its environmental responsibility seriously and
focuses on reuse, recycling, and composting instead of constantly
allocating and disposing of objects. Every day, exabytes of data are
irresponsibly garbage collected into bit buckets where they will never
be used again1. 1 Those bits could be the works of

artists, the deleted tweets of politicians,
or the carefully crafted structures
assembled by programmers, and it
is our duty as denizens of our data
centers and as stewards of our servers
to ensure that those stale bits are
disposed of responsibly, with the care
and respect that they deserve.

Ecological Memory Management is an aspect of organic computing,
which encourages the use of local resources to solve problems whenever
possible. Entropy is a common resource request, for instance, and
many processes pester the operating system quite frequently with
random calls. We show that with a little work by our composting
garbage collector, the garbage created by the typical process provides
a high quality source of entropy that should be more than sufficient
for its needs2. 2 When we run our processes in

completely sterile environments, devoid
of rich digital detritus, is it any wonder
that they crash when the slightest thing
goes wrong?

We also show that the work put into constructing values and data
structures can be saved through reuse and recycling. This provides a
number of benefits, such as automatic object pooling, and minimizes
wasteful bit flips.
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Ecological Memory Management asks computer users and their
processes to strive to follow the Boy Scout Rule: leave the computer
better than you found it, exploit as few system resources as possible,
and give bits and bytes back whenever possible to be shared, reused,
recycled, or composted. By working together with our co-located
neighbors, we can ensure that our server farms can continue to
produce high quality digital comestibles far into the future.

The Memory Landscape

Organic computing starts on the farm. The memory managed
within a computational process — the land on its farm — cycles
between four states throughout the lifecycle of the process, as seen in
Figure 1.

• Fresh Soil. Fresh memory available to make new allocations. Will
become planted soil when an allocation is made.

• Planted Soil. Memory occupied by planted objects. This is the
working heap for the process and its threads. When the compost
heap expands, all live objects are transplanted to a new patch of
fresh soil, and the old patch of planted soil is plonked onto
the end of the compost heap and begins breaking down3.

3 When you practice organic computing,
your process interconnects with others
through the rich loamy soil, full of
nutritious hummus, and your process
is a pita chip or some broccoli and
it just came out of the fryer or the
farmer’s market tote you’ve been
carrying carefree down a summer street
wondering where your next stop will
be: to the Cheshire cheesery, or maybe
to Mabel’s, where the dreamy bloke
with long freckled arms serves hot
buttered rolls and you’ve thought about
it but never gotten up the nerve to ask
about his accent, because the rolls are
really quite good and it might cause a
moment but not necessarily the good
kind of moment it could be the bad
kind of moment, like the kind where
you don’t want to go back anymore,
and that would be a shame because
the rolls really are quite good, and in
the end you did stop and have one,
and he was there and you didn’t ask,
and now you are home and you are
dipping the broccoli and definitely not
the fresh pita chip into the hummus,
and it is delicious, and this is exactly
what organic computing is like.

• Compost. Memory currently being broken down and converted
into entropy. Not directly usable, but will eventually become mulch

once it meets a suitable level of randomness. Will be transformed
by various organisms which have been evolved for this purpose.

• Mulch. Memory that has been sufficiently broken down and is
available for entropy requiring operations. As bytes are read, the
mulch is turned into soil, and the cycle begins again. Mulch can be
instantly used as soil if there is an urgent need for new memory.

Figure 1: Like a gelatinous cube
squidging through long twisty
passages, the compost heap lumbers
on.

These four states4 encompass everything within the ecological

4 Corresponding to the four layers of
the ecological lifecycle: growth, death,
decay, and spontaneous generation.

memory management process.

organic computing association (orca)
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When fresh soil or mulch are needed, the compost heap runs.
Under normal conditions this provides ample room for process
evolution. If additional soil is required for new allocations, the soil
patch can be extended by acquiring more land from the county (the
operating system).

We can also fall back to the operating system if randomness is
required beyond what is provided by our local mulch supply5. 5 And if blessed with a bountiful mulch

harvest, the process can provide excess
entropy back to the OS for use in other
processesThe Recycling Centre

Our recycling model provides for efficient reuse of both
data structures and values, bringing the benefits of object pooling to
the runtime level, rather than requiring the programmer to do the
work explicitly.

The computational and memory manipulation work of constructing
objects is typically lost after that object has been deallocated, so that
in addition to those bytes being sent to the landfill the work itself is
also wasted.

Instead we can reuse these components for new objects6. In cases 6 In practice the first step is to reduce
usage. Ask yourself before your next
allocation: do you really need that
object, or could your program get by
without it?

where there is not an exact match, we can recycle components and
turn them into exactly what we need.

First, we describe what an object actually is. In a C-like language,
for instance, an object could be as simple as a box:

struct box {

uint8_t type;

void *value;

};

The type field represents the underlying type of the value (such as
boolean, float, tuple, etc.). The value field is a pointer to the block
of memory representing the actual object data.

Setting up our objects this way creates a clean separation that
allows reusing boxes and values independently from each other.
Some may object7 to having a pointer-sized memory overhead for 7 Pun very much intended. In fact,

this sentence was revised three times
specifically to make this work.

every object type, including integers. This is a reasonable objection,
but it is ultimately a small price to pay for a fully reusable and
recyclable object representation.

Some additional memory overhead is required for the recycling
centre as well. This will take up a fixed space in memory, and will
consist of stacks8 of boxes and values, categorized by object type (see 8 Pun not intended. We’re talking

about warehouses and boxes here, not
computer stuff.

Fig. 2).
When a dead object is discovered, a pointer to its box is added to

the corresponding box stack, and its value to the corresponding value

organic computing association (orca)
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stack. If a stack is full, its oldest pointer goes away9. 9 As noted previously, these aren’t
actually stacks. A ring buffer, for
instance, may be a much better fit.

Figure 2: The gnomes’ recycling centre,
an accredited organic computing
recycler.

Reuse

When a new object is allocated, the gnomes10 first check the warehouse 10 These are the workers in the recycling
centre. They could also be elves. This is
implementation dependent, unless that
implementation is GNOME.

for a matching box. If one is found it is removed from the stack and
used, otherwise a new one is bought from the store and deposited in
fresh soil.

In either case, the pointer to that box is handed to the application
and is no longer under management by the gnomes. By applying this
recursively to the data structures in our system, object pooling11 is 11 Further work is required to determine

whether a pool would be a better choice
of abstraction than a warehouse.

provided at the language level.
Values work similarly: if a matching value is found, its pointer

is removed from the stack and handed to the application. However,
there is a lower chance that an identical value exists in the warehouse,
so a second layer of processing is provided for values that need to be
transformed a bit12. 12 Or a nibble.

Recycle

As we saw, when a new value is requested the appropriate value
stack13 is checked, and if found then that value is tucked into the 13 Choice of stack implementation left to

implementer. Being organic, we choose
trees.

box. Otherwise, a new value must be bought from the store. But
what if we have a bunch of values that are made of the same material
as our desired value (i.e. it is of the same type), but isn’t quite exactly

organic computing association (orca)
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what we need? No need to rush off to the store yet! We can do a
bit of processing on a value in the warehouse to recycle it into the
requested value. This might sound a bit too involved for something
like an integer, but think about larger structures such as strings,
lists, and tuples. If we can get the exact value we need by simply
stitching in a few bits, this could potentially save us from making a
large allocation from scratch.

This approach has some nice benefits. Instead of lugging the
entirety of the data from the central silo to where we need it, we take
the computation "out into the field". This avoids the von Neumann
bottleneck14, and also makes our recycling problem "embarassingly 14 John Backus. Can Programming Be

Liberated from the Von Neumann Style?
A Functional Style and Its Algebra of
Programs, volume 21, page 613–641.
Association for Computing Machinery,
New York, NY, USA, aug 1978. doi:
10.1145/359576.359579. URL https:

//doi.org/10.1145/359576.359579

parallel"15. There are a wide array of potential extensions: we could

15 Much like "guilty pleasures" in music,
we reject the negative connotation
of this phrase. There is, in fact, an
isomorphism between these two
domains. We have discovered a truly
marvelous proof of this, which this
margin is too narrow to contain.

implement this with traditional parallel hardware such as GPUs or
multiple cores, or something more radical like GreenArrays16, or

16 Green Arrays Architecture. 2010.
URL http://www.greenarraychips.

com/home/documents/greg/

PB002-100822-GA-Arch.pdf

the Movable Feast Machine17. Alternatively, we could treat memory

17 D. H. Ackley, D. C. Cannon, and L. R.
Williams. A Movable Architecture for
Robust Spatial Computing, volume 56,
pages 1450–1468. 2012. doi:
10.1093/comjnl/bxs129. URL
https://academic.oup.com/comjnl/

article-pdf/56/12/1450/1244190/

bxs129.pdf

as a 2D grid and determine the rules for a cellular automata that
will converge to our desired grid state, such as in 18. This could

18 Alexander Mordvintsev, Ettore
Randazzo, Eyvind Niklasson, and
Michael Levin. Growing Neural Cellular
Automata, volume 5. 2020. doi:
10.23915/distill.00023. URL https:

//distill.pub/2020/growing-ca/

potentially be supplied by the hardware, much like the "scrubber
circuit" in ECC memory.

The Compost Heap

Composting the garbage created by our process means
generating something useful from the waste. In particular, we take
advantage of bitrot to convert that waste into entropy. Entropy is
useful as input to a wide variety of processes, including cryptographic
operations, machine learning systems, data science, probabilistic
programming, and differential privacy applications.

Our composting memory management returns unused memory
to its natural state of entropy, allowing it to be consumed as input to
entropy-seeking functions and reducing reliance on out-of-process
entropy generation methods.

It moves continuously, slurping in objects as it makes its way
linearly through memory, transplanting live objects safely into
reclaimed land on its far end and composting everything else.

When the compost heap claims dead objects into its fold it releases
byproducts, in the form of orphaned child objects19 and values that 19 Forthcoming paper on re-homing

orphans.are no longer reachable from the roots, and these are captured by the
gnomes and stored in their warehouse for recycling and reuse. The
compost heap answers the question, "where do the recyclables come
from?".

The compost heap is the centre of the soil transformation and
land reclamation aspects of organic computing. The process of going

organic computing association (orca)
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Figure 3: The Compost Process.
1. Initial state
2. Live objects transplanted into

fresh soil
3. The compost pile consumes

expired objects, and emits fresh mulch

through the compost heap transforms old, stagnant plant growth into
fresh mulch, which is then broken down through use into fresh soil,
ready for transplanting and fresh seeds.

The compost heap design is amenable to incremental garbage
collection, and in particular to having a thread manage the compost
heap concurrently with other threads managing objects. In fact
multiple compost heaps can be run in parallel, each working through
a region of contiguous memory, each managed independently by a
different thread.

The performance characteristics of the compost heap are tunable,
and in particular the amount of arable soil and mulch that it attempts
to keep on hand is a configurable parameter. It can also be tuned
dynamically, in response to runtime analysis of the needs of that
particular land, which may cause the compost heap to shamble
steadily or lurch sporadically depending on the season. In the worst
case, additional land or mulch can be bought from the store, if
increased compost heap activity is insufficient to satisfy the farmer’s
demands.

To increase the quality of the compost and mulch, the farmer can
perform crop rotation by planting different sorts of data in the soil,
giving the entropy a chance to nourish itself on a variety of different
types of bits20. 20 The two main types of course being

zero and one.The compost heap also performs as an incremental defragmentor21.
21 Or "dementor" for short.

It can act to reunite long-lost cousin objects or draw together newly
friendly objects, improving data locality and increasing cache performance,
if only we knew what objects pointed to the one under consideration,

organic computing association (orca)
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and whether it was alive or not.

Mycorrhizal Association

Cherry-picking live data presents a challenge: the compost heap
must quickly determine which objects are compostable and which
should be transplanted, but how can it know that?

Reference counting can determine whether an object is dead
or alive, but requires expensive bookkeeping work every time a
reference is changed or goes out of scope, and doesn’t deal well
with cycles. Tracing collectors can do this, because everything is
connected, by tracing a path from the roots down to every alive
object. Reference counters and tracing collectors form a kind of
dual22, and it would seem we are at an impasse: our options for 22 David F. Bacon, Perry Cheng, and

V. T. Rajan. A Unified Theory of Garbage
Collection, volume 39, pages 50–68. 2004.
doi: 10.1145/1035292.1028982

automated liveness assessment exist only on this continuum.
These options are at odds with our concurrent, free-range model

where the compost heap takes care of freeing memory instead
of requiring the process to pause to do potentially heavyweight
reference counting cleanup when it really just wants to return a
value23, or requiring the world to stop so tracing can be done. 23 Which, yes, implicitly casts a bunch of

objects out of scope, but cleaning that
up in the hotloop is like stopping to
polish your wellies every time you get a
bit of muck on them.

Organic computing offers a better way. Everything is connected,
and those connections are connected. It has been almost seventy years
since the first garbage collectors24, and longer still for pointer-based

24 John McCarthy. History of LISP, page
173–185. Association for Computing
Machinery, New York, NY, USA, 1978.
ISBN 0127450408. URL http://jmc.

stanford.edu/articles/lisp/lisp.pdf

references generally. It is fair to say our computational systems have
evolved considerably. So why are we still using antiquated one-way
pointers?

Organic computing systems incorporate fully homeomorphic two-
way pointers. These are the original hypertext links25, bidirectional 25 Legendary was the Xanadu where

Ted Nelson decreed these stately
pleasant links.

Theodor H Nelson. Computer lib.
Nelson, 1982

graph structures, full duplex connections, and in their presence life
and death are reduced to their barest simplicity.

The organic process farmer, knowing that everything within
their process plot is deeply interconnected through this mycorrhizal
network of symmetric connections, simply follows them back from
any object until they reach the roots. This is an O(log(n)) process in
the average case, where the first incoming link, from which the object
was created, connects back to the roots.

Note that composting work is naturally incremental, as each object
is independently absorbed by the compost heap before moving on
to the next. The composter can clear a small number of objects with
a proportionally small amount of work, and then rest until needed
again. It can also be performed in a concurrent, lock-free fashion, as
seen in our implementation below.

The benefits of fostering proper mycorrhizal associations are

organic computing association (orca)
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numerous:

• No direct cost on deallocation or reference mutation, unlike
reference counting

• Small, constant cost when creating a reference, similar to reference
counting

• Handles cyclic garbage in a natural fashion

• Fast liveness checking in the average case26 26 The first reference typically traces
directly to the root, if the object is still
live.• Fast transplanting of live objects27

27 This is directly due to the mycorrhizal
mycelium (see below), which makes
finding all references to individual
objects trivial.

Polyfill Implementation

The benefits of organic computing are available even on our
current factory farm hardware, as the following implementation
proves. There is nothing quite as pleasing as running your own fully
organic process on a self-sufficient plot of memory.

We store reverse references in a doubly-linked list, called the
object’s hypha. The collective mass of hyphae across objects is the
process’s mycelium.

An individual entry in an object’s hypha is a cell. Each cell contains
an object, which may contain active references to the hypha’s object;
the previous cell; and the next cell, and so is a triple of pointers:

• prev The previous cell; the hypha’s object if this is first cell

• obj The cell’s object,

• next The next cell; null if this is last cell

Our simple reusable boxes from earlier gain three additional fields,
one for lock-free composting and two for managing the object’s
hypha.

• forward Pointer to copied object

• parenthesome Pointer to first cell in the hyphae

• Spitzenkörper Pointer to last cell in the hyphae

The make-ref procedure is invoked whenever an object B adds a
reference to object A.

organic computing association (orca)
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procedure make-ref(A, B) {

Y ← A.Spitzenkörper

Z ← [Y, B, null]

compare-and-swap(A.Spitzenkörper, Y, Z)

Y.next ← Z

}

The compare-and-swap function will change the value of A.Spitzenkörper
to Z if and only if it is currently Y. This needs to be done as a single
atomic operation28 to prevent dropping cells when two or more 28 Any other suitable atomic operation

may be substituted for compare-and-
swap, if it is not available.

processes call make-ref concurrently. This compare-and-swap function
throws an error if it fails, and the caller (or runtime) should reinvoke
make-ref until it succeeds.

When the compost heap comes upon an object A, it recursively
walks the mycelium reachable from A until reaching the roots. In
particular, it performs a cycle-free depth-first search through each
object’s hypha.

Along the way it removes any inactive cells, where the object no
longer points to the target object, by mutating the doubly-linked
list. This can be done concurrently with other threads extending the
object’s hypha, except for the last cell, which requires compare-and-
swap to remove29. 29 If CAS fails in this case then the

last cell is no longer last, and can be
removed without reinvoking CAS.

If root is reached for the object O, then the transplant procedure is
invoked:

procedure transplant(O) {

O2 ← copy(O)

O.forward ← O2

O.parenthesome.prev ← O2

forall O.hypha as cell:

swap-ref(cell.obj, O, O2)

forall refs(O) as ref:

swap-cell(ref, O, O2)

}

The copy procedure copies O30 into the top of fresh soil, updates 30 Note that the copy is merely a box:
the contents of O are unchanged by this
operation.

the fresh soil pointer, and returns the old fresh soil pointer. Updates
to the fresh soil pointer must occur atomically.

Note that the copy of the object does not have its forward field
set. Dereferencing an object with a non-null forward field causes
its forward to be returned instead. The forward is only set by the
composter during ingestion, and once it is set the copy is returned
instead of the original object, so no objects in planted soil can have
a forward field and an object with a forward field always forwards
to a fresh copy in newly planted soil. Once the transplant procedure
completes no references to the old object remain in planted soil, so

organic computing association (orca)
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forwards are never more than one layer deep.
The swap-ref procedure replaces each instance of O with O2 in

cell.obj, recursively through the cell.obj data structure. This needs to
be done atomically, in case another thread is mutating that reference
at the same time, but if CAS fails it does not need to be repeated, as
that reference no longer points to O. Because the forward pointer is
set on O this step does not require any locking.

The swap-cell procedure walks the object’s hypha, changing any
references to O to O2. This swap does not need to be done atomically,
as this is the only place in the system that a cell’s obj is mutated.

Otherwise, if no paths through the reachable mycelium connect
this object to the roots, then

1. Recycle the object;

2. Recycle everything in object’s reachable mycelium, recursively31; 31 This can make use of the visited
list from the cycle-free recursive walk
earlier.3. For each recycled object, check the objects it points to: if it was

their only active reference, recycle them as well.

All objects are added to the gnomes’ warehouse for reuse and
recycling. This may consist of a considerable portion of the total
objects, depending on the runtime allocation dynamics of the process32. 32 In fact, the best allocation dynamics

for this scenario may match up to
the use case of object pooling quite
well: objects that are extended over
a medium term timeframe, and
then deallocated. This makes some
sense, given that object pooling is
simply application-level recycling.
Organic computing makes object
pooling a runtime concern instead of an
application concern.

If the compost heap encounters a cell in the block it is consuming,
and that cell holds a valid reference to its object, then the compost
heap copies it and mutates the neighbouring hypha cells to point to
the copy. Otherwise, it is dropped from the hypha. If it was both the
parenthesome and the Spitzenkörper then the object is sent to the
recycling centre.

Automated memory management systems typically exhibit a wide
range of performance characteristics depending on the allocation
dynamics of the process they are managing. While this composter
can run concurrently and does not require locks or pauses to perform
its task, if it spends too long clearing an object it may block new
allocations.

There are several options available if this is an issue. An easy
one is to keep a buffer of fresh soil available that is large enough to
account for any object graphs that need to be traversed. Another is
to purchase more land from the county to supplement the supply of
fresh soil.

Another option is to preemptively transplant an object after a fixed
amount of time. Dead cells are dropped from hyphae as soon as they
are encountered, and are trivial to compost, so there is less work
to be done on that object in the future. An object that is extremely
popular with a large number of short lived objects may need this

organic computing association (orca)
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kind of treatment, for instance – a situation which provides much
fodder for the gnomes’ recycling warehouse.

Sometimes the cross-connections among the myriad hyphae
simply cannot be divided up neatly: they are deeply intertwingled33. 33 Theodor H Nelson. Conmputer Lib /

Dream Machines. DOVER PUBNS, 2003In these cases the mycelium subnets may not be able to be conclusively
proven to be live or dead within fixed timer, and if there are cycles
then there may be few dropped cells. Maintaining the exploration
index of each visited hyphae allows the object to be transplanted
and exploration work to be continued in a separate process. Should
a connection to the roots eventually be found, objects on that path
might be saved in a quasi-roots set, as a way of fast-tracking those
objects. Otherwise the whole mycelium mass can be recycled. This
allows real-time guarantees to be met even in the face of pathological
fungal growth.

This implementation increases the size of pointers and the work
required to create a new reference by a small constant factor. In
exchange, it provides a fully incremental and concurrent collector
that works on modern hardware, without requiring hardware support
for two-way links, quantum entanglement, or the Banach-Tarski
paradox.

Entropy Generation Techniques

Bitrot is wonderful but slow acting. Organic system operators
know they can go beyond merely waiting for bitrot to take its course
naturally, and actually accelerate it through a combination of techniques.
Some of these supply active agents to the compost heap, while others
structure the environment itself for optimum entropy production and
breakdown of detritus.

Bit Flipping

Flipping random bits can require as much entropy as it creates,
because the bit to flip must be chosen. This can be stretched, for
instance by using the value of the found byte to determine the offset
of the next bit to flip, but this can devolve into cycles and other
undesirable behaviour.

This technique is simple to implement, cheap to run, and pairs
nicely with other techniques, but is generally insufficient in isolation.
A light smattering of these bacteria across the whole compost heap is
ideal.

organic computing association (orca)
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Brainworms

We present brainworms, a small language for decaying garbage
into entropy. The program’s primary purpose is self-mutation, so it
eschews I/O, data, and even a stack in favour of efficient mutation.

Each command is a single byte: the first two bits tell you where to
write, the next two bits tell you where to move the program pointer,
and the final four bits tell you what to write.

Write and move offsets are taken modulo the compost heap, so
they can’t escape its boundary.

Bits Write offset

00 0

01 1

10 -1

11 32 - remaining six bits

Table 1: Writing offset, given by the first
pair of bits

Bits Move offset

00 write bits determine move

01 1

10 -1

11 8 - remaining four bits

Table 2: Moving offset, taken from the
second pair of bits

Once you have the writing and movement offsets sorted out, the
final four bits determine the pattern to write. These bit patterns are
XOR’d with the bits currently at the target byte, which is given by

program-pointer + write-offset
Some entropy should be expended to choose a random pointer

into the compost heap. After that this nematode-like process can
continue for some time, multiplying the initial investment of entropy.

organic computing association (orca)
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Compostular Automata

There are a large number of possible rulesets for cellular automata,
and many of them are quite good at generating entropy.34 34 We recommend Paterson’s worms, a

classic breed of burrowing critter.For instance, a section of memory can be treated with Rule 90, a
highly entropic linear rule. Memory can also be treated as a higher
dimensional space, opening the door to 2D, 3D, or even higher forms
of cellular automata.

The rules and parameters driving the cellular automata evolution
can themselves be evolved based on a fitness function of best pseudo-
random number generator (PRNG) analysis, using for instance
genetic algorithms to drive the evolution35. 35 Andrew Walker. Entropy and

Applications of Cellular Automata. 2013.
URL https://sites.math.washington.

edu/~morrow/336_13/papers/andrew.

pdf
Watering

Watering adds byte patterns that are known to interact in interesting
and highly entropic ways within other entropy stretching devices,
like Compostular Automata and brainworms. This increases the
likelihood that those techniques will decay memory patterns when
applied.

Shoveling

Shoveling mixes up the compost heap by randomly swapping chunks
of bytes. Like bit flipping, this is actually an entropy sink, not a
source, because picking which bytes to shovel can consume as much
entropy as it introduces.

However, shoveling can be good for breaking up stretches of
highly structured contiguous memory. When combined with other
techniques like watering, this may increase the chances that these
stretches will be properly decomposed through the repeated application
of other techniques.

ML

Whenever we show someone a list of breakfast cereals or political
parties assembled by GPT-3 they always say “that’s so random”. Let’s
use that to stretch the entropy found in used memory.

Pick a pointer into memory, and cast it into English strings. Because
contiguous memory can be highly patterned, we suggest using five
bits per character, which also helps overcome the large number of
bytes that are non printable as ASCII. Use the six unmatched bit
strings as word breaks.

Pass the results through a series of filters to convert the characters
to the nearest word and add punctuation. Then pass it into GPT-3.
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This output is almost ready to be mixed back into our compost
heap. However, English has few characters, and ASCII is highly
structured, so let’s translate into Chinese first. Then we can XOR the
results back into the compost heap.

Hardware support

Many of the techniques in this section require additional processing
power to perform, causing the OS or process runtime to actively
work to generate entropy. Enabling hardware support allows that
processing to be moved off the CPU, and could even reduce or
completely eliminate some sources of auxillary power draw.

For instance, modern DRAM refreshes every bit in memory
approximately every 64ms. A simple circuit could introduce a linear
cellular automata like Rule 90, which could be applied to a contiguous
block of memory as a natural part of the refresh cycle. We refer
to this as refreshing automata. In combination with less frequent
application of some of the other techniques mentioned here, this
provides large amounts of entropy within the compost heap with
negligible draw on the available processing power.

Security exploits like rowhammer36,37 that directly target memory 36 Yoongu Kim, Ross Daly, Jeremie Kim,
Chris Fallin, Ji Hye Lee, Donghyuk
Lee, Chris Wilkerson, Konrad Lai,
and Onur Mutlu. Flipping bits
in memory without accessing them,
volume 42, pages 361–372. 2014.
doi: 10.1145/2678373.2665726. URL
https://users.ece.cmu.edu/~yoonguk/

papers/kim-isca14.pdf
37 “Half-Double”: Next-Row-Over Assisted
Rowhammer. 2021. URL https://

github.com/google/hammer-kit/blob/

main/20210525_half_double.pdf

highlight another potential approach to memory-based entropy
generation. As hardware memory cells become smaller they are
increasing subject to both conventional and quantum-level effects
that can cause writes in one part of memory to affect another. These
effects can be used as the basis of a passive entropy generation
method we refer to as ghost writing, where writes in one part of
memory cause effects in another.

The above shows that we can add entropy for little or no power
and processing consumption, but we can go even further, and introduce
entropy while reducing power consumption and speeding up memory
access. Error correction in memory is important for preventing single
event effects (SEEs) introduced by cosmic rays and other kinds of
ionizing radiation.

The most common kind of error prevention, active memory
scrubbing in ECC memory, increases power consumption and reduces
memory performance38. By turning it off within the compost heap a 38 Shalini Ghosh, Sugato Basu, and

Nur A. Touba. Selecting Error Correcting
Codes to Minimize Power in Memory
Checker Circuits, volume 1, pages 63–72.
2005. doi: 10.1166/jolpe.2005.007.
URL https://users.ece.utexas.edu/

~touba/research/jlpe05.pdf

source of entropy is introduced that is not only free, but actually
saves power and increases memory access performance within those
regions.

Other mechanisms of error prevention can be reversed as well.
Error correcting codes can be complimented by error amplifying
codes39. Current memory geometries are carefully optimized to 39 "Parity is for farmers", as Seymour

Cray famously said. We agree. The lack
of parity is also for farmers. Organic
computing has room for both sides.

Gordon Bell. CDC 6600. 2022. URL
http://gordonbell.azurewebsites.

net/craytalk/sld047.htm

spread out cells, preventing crosstalk effects and reducing the incidence
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of multibit SEEs. Those circuits could instead be optimized for both
error correction and amplification, where changing the flow of current
toggles between the two modes.

The Broader Ecosystem

No individual plot of land is an island: it is connected to its
neighbours as part of a broader ecosystem. Likewise, our processes
are connected to each other by the operating system and hardware
within which they reside.

It is within this context that a process may manage its memory
and entropy as part of a collective. This greatly expands the use
cases that can be supported by our ecological memory management
model. A process that requires large amounts of entropy but makes
comparatively few allocations needs a source of mulch. It can run its
compost heap hotter, but if there are other processes in the county
that are making more mulch than they need, it could also purchase
that entropy from them.

While we believe that computational processes should be as self-
reliant as possible, having a good relationship with one’s neighbours
and efficient trade routes can considerably increase the space of
viable processes. While it may seem somewhat quaint to think of
processes exchanging free memory and entropy, we envision rich
ecosystems of resources trading within single machines as well
as across data centres, and ultimately even openly between mostly
mutually distrusting systems.

While the economics of permaculture processes have only begun
to be explored, the basics are very simple: off-grid processes may be
able to live off the land by foraging enough entropy to pay for their
stay; responsible processes ought to be rewarded for buying mulch
locally though county-level discounts; cloud containers can generate
credits with their hypervisors by producing consumables like entropy
and releasing or coharvesting memory where available.

Future Work

Organic computing is in its infancy, and even this work on
ecological memory management barely scratches the surface. This
field is fertile ground for future research.

The economics of interactions, particularly those that cross county
lines, need a good deal more work to be understood and managed
for optimal growth and sustainability. There are a wide variety of
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beneficial products that may be created beyond simply mulch. As a
community we need to sink our teeth into runoff and other kinds of
soil and water management issues and get our hands dirty digging
into organic fertilizers.

There are important externalities to consider as well. Security
issues such as pests and weeds, for instance, must be managed
differently in organic computing, but our ecological memory management
methods outlined in this paper point toward positive security impacts
as well, and are a natural fit with coming hardware improvements
such as capability memory architectures40. 40 Robert Watson, Simon Moore,

Peter Sewell, and Peter Newmann.
Department of Computer Science and
Technology: Capability Hardware Enhanced
RISC Instructions (CHERI). 2022. URL
https://www.cl.cam.ac.uk/research/

security/ctsrd/cheri/

Additional work is also needed to understand how hardware
support can enable efficient and direct creation of the mycorrhiza, as
well as network protocols for supporting the serialization and live
transfer of mycellium mats with their associated objects.

Hardware level memory encryption provides potential for a
new entropy generation technique. This requires more analysis to
understand the dynamics of consuming this second layer of entropy,
which is potentially disconnected from the mulch heap.

There are many other forms of hardware supported entropy
generation that remain to be studied. An intriguing possibility, which
suggests applications in reversible computing, is to consider a bit flip
not as a unilateral action in a closed system, but rather as a transfer
of something41 from one cell to another. If the system maintains an 41 Electrical potential, gas, liquid, solid,

spin, light: any kind of quantity will do.invariant that exactly half the cells are full at all times, then compost
heaps provide a destination for cells that need to be drained and a
source for cells that need to be filled.

Developing a metric for the quality of mulch, and providing
support at the OS or hardware level for quantifying this, is a necessary
component for enabling cross-farm exchanges, even those happening
within the same county. There are good tools available for analysing
pseudorandom number generators42, but understanding how to 42 Michael J Strube. Tests of Randomness

for Pseudorandom Number Generators,
volume 15, pages 536–537. 1983. doi:
10.3758/bf03203701

apply these appropriately to mulch, and how to account for other
factors potentially impacting the quality of the mulch, are left for
future work.

Conclusion

Organic computing offers many benefits to the world. In
this work we have focused on ecological memory management, and
have shown that it can yield large scale improvements within our
individual processes, throughout our operating systems and devices,
and across our data centres.

We presented a design for reusing boxes, allowing the runtime to
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perform automatic object pooling, and for recycling values, providing
opportunity for in-memory processing and minimizing wasteful bit
flips.

We also showed a composting garbage collector: lock-free, incremental,
concurrent, and scalable, it also produces valuable mulch as a byproduct,
which can be used in-process or traded with other processes. We
revealed the synergy between this composting collector and a new
memory management technique involving two-way pointers, which
breaks the bottleneck of memory management techniques that are
caught in the tradeoffs between reference counting and tracing.

We provided a wide variety of techniques for converting waste
memory into valuable entropy, and pointed to work remaining to
be done, both within the broader ecosystem as well as at the level of
hardware support.

At the end of the day, every developer has to make decisions about
how to responsibly manage their garbage. We have presented a
range of ecologically oriented options for designing computational
processes that consume fewer resources, produce less waste, are more
self-sufficient, and are better stewards of their local and regional
ecosystems. We hope you will choose organic computing: for yourself,
for the computers, for our world.
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Bits Write patterns

0000 01010101

0001 10101010

0010 00110011

0011 11001100

0100 00001111

0101 11110000

0110 00111100

0111 11000011

1000 00101011

1001 11010100

1010 01010011

1011 10101100

1100 00100111

1101 11011000

1110 00110101

1111 11001010

Table 3: The write patterns for the
remaining four bits
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